首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10204篇
  免费   1897篇
  国内免费   1242篇
化学   7481篇
晶体学   63篇
力学   654篇
综合类   77篇
数学   1078篇
物理学   3990篇
  2024年   11篇
  2023年   278篇
  2022年   237篇
  2021年   348篇
  2020年   478篇
  2019年   417篇
  2018年   338篇
  2017年   291篇
  2016年   499篇
  2015年   437篇
  2014年   530篇
  2013年   763篇
  2012年   959篇
  2011年   975篇
  2010年   643篇
  2009年   633篇
  2008年   713篇
  2007年   623篇
  2006年   548篇
  2005年   478篇
  2004年   363篇
  2003年   319篇
  2002年   257篇
  2001年   208篇
  2000年   208篇
  1999年   240篇
  1998年   208篇
  1997年   189篇
  1996年   197篇
  1995年   177篇
  1994年   142篇
  1993年   121篇
  1992年   101篇
  1991年   74篇
  1990年   83篇
  1989年   57篇
  1988年   47篇
  1987年   45篇
  1986年   29篇
  1985年   27篇
  1984年   14篇
  1983年   9篇
  1982年   13篇
  1981年   8篇
  1980年   5篇
  1979年   2篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
Synthesis of cyclohexanone oxime via the cyclohexanone-hydroxylamine process is widespread in the caprolactam industry, which is an upstream industry for nylon-6 production. However, there are two shortcomings in this process, harsh reaction conditions and the potential danger posed by explosive hydroxylamine. In this study, we presented a direct electrosynthesis of cyclohexanone oxime using nitrogen oxides and cyclohexanone, which eliminated the usage of hydroxylamine and demonstrated a green production of caprolactam. With the Fe electrocatalysts, a production rate of 55.9 g h−1 gcat−1 can be achieved in a flow cell with almost 100 % yield of cyclohexanone oxime. The high efficiency was attributed to their ability of accumulating adsorbed hydroxylamine and cyclohexanone. This study provides a theoretical basis for electrocatalyst design for C−N coupling reactions and illuminates the tantalizing possibility to upgrade the caprolactam industry towards safety and sustainability.  相似文献   
102.
Borocarbonitride (BCN) materials are newly developed oxidative dehydrogenation catalysts that can efficiently convert alkanes to alkenes. However, BCN materials tend to form bulky B2O3 due to over-oxidation at the high reaction temperature, resulting in significant deactivation. Here, we report a series of super stable BCN nanosheets for the oxidative dehydrogenation of propane (ODHP) reaction. The catalytic performance of the BCN nanosheets can be easily regulated by changing the guanine dosage. The control experiment and structural characterization indicate that the introduction of a suitable amount of carbon could prevent the formation of excessive B2O3 from BCN materials and maintain the 2D skeleton at a high temperature of 520 °C. The best-performing catalyst BCN exhibits 81.9 % selectivity towards olefins with a stable propane conversion of 35.8 %, and the propene productivity reaches 16.2 mmol h−1 g−1, which is much better than hexagonal BN (h-BN) catalysts. Density functional theory calculation results show that the presence of dispersed rather than aggregated carbon atoms can significantly affect the electronic microenvironment of h-BN, thereby boosting the catalytic activity of BCN.  相似文献   
103.
Double perovskites (DP) have attracted extensive attention due to their rich structures and wide application prospects in the field of optoelectronics. Here, we report 15 new Bi-based double perovskite derived halides with the general formula of A2BBiX6 (A=organic cationic ligand, B=K or Rb, X=Br or I). These materials are synthesized using organic ligands to coordinate with metal ions with a sp3 oxygen, and diverse structure types have been obtained with distinct dimensionalities and connectivity modes. The optical band gaps of these phases can be tuned by changing the halide, the organic ligand and the alkali metal, varying from 2.0 to 2.9 eV. The bromide phases exhibit increasing photoluminescence (PL) intensity with decreasing temperature, while the PL intensity of iodide phases changes nonmonotonically with temperature. Because the majority of these phases are non-centrosymmetric, second harmonic generation (SHG) responses are also measured for selected non-centrosymmetric materials, showing different particle-size-dependent trends. Our findings give rise to a series of new structural types to the DP family, and provide a powerful synthetic handle for symmetry breaking.  相似文献   
104.
Precise regulation of vascular senescence represents a far-reaching strategy to combat age-related diseases. However, the high heterogeneity of senescence, alongside the lack of targeting and potent senolytics, makes it very challenging. Here we report a molecular design to tackle this challenge through multidimensional, hierarchical recognition of three hallmarks commonly shared among senescence, namely, aptamer-mediated recognition of a membrane marker for active cell targeting, a self-immolative linker responsive to lysosomal enzymes for switchable drug release, and a compound against antiapoptotic signaling for clearance. Such senolytic can target and trigger severe cell apoptosis in broad-spectrum senescent endothelial cells, and importantly, distinguish them from the quiescent state. Its potential for in vivo treatment of vascular diseases is successfully illustrated in a model of atherosclerosis, with effective suppression of the plaque progression yet negligible side effects.  相似文献   
105.
Aqueous rechargeable zinc-ion batteries (ARZBs) are impeded by the mutual problems of unstable cathode, electrolyte parasitic reactions, and dendritic growth of zinc (Zn) anode. Herein, a triple-functional strategy by introducing the tetramethylene sulfone (TMS) to form a hydrated eutectic electrolyte is reported to ameliorate these issues. The activity of H2O is inhibited by reconstructing hydrogen bonds due to the strong interaction between TMS and H2O. Meanwhile, the preferentially adsorbed TMS on the Zn surface increases the thickness of double electric layer (EDL) structure, which provides a shielding buffer layer to suppress dendrite growth. Interestingly, TMS modulates the primary solvation shell of Zn2+ ultimately to achieve a novel solvent co-intercalation ((Zn-TMS)2+) mechanism, and the intercalated TMS works as a “pillar” that provides more zincophilic sites and stabilizes the structure of cathode (NH4V4O10, (NVO)). Consequently, the Zn||NVO battery exhibits a remarkably high specific capacity of 515.6 mAh g−1 at a low current density of 0.2 A g−1 for over 40 days. This multi-functional electrolytes and solvent co-intercalation mechanism will significantly propel the practical development of aqueous batteries.  相似文献   
106.
Despite carbonate electrolytes exhibiting good stability to sulfurized polyacrylonitrile (SPAN), their chemical incompatibility with lithium (Li) metal anode leads to poor electrochemical performance of Li||SPAN full cells. While the SPAN employs conventional ether electrolytes that suffer from the shuttle effect, leading to rapid capacity fading. Here, we tailor a dilute electrolyte based on a low solvating power ether solvent that is both compatible with SPAN and Li metal. Unlike conventional ether electrolytes, the weakly solvating ether electrolyte enables SPAN to undergo reversibly “solid–solid” conversion. It features an anion–rich solvation structure that allows for the formation of a robust cathode electrolyte interphase on the SPAN, effectively blocking the dissolution of polysulfides into the bulk electrolyte and avoiding the shuttle effect. What's more, the unique electrolyte chemistry endowed Li ions with fast electroplating kinetics and induced high reversibility Li deposition/stripping process from 25 °C to −40 °C. Based on tailored electrolyte, Li||SPAN full cells matched with high loading SPAN cathodes (≈3.6 mAh cm−2) and 50 μm Li foil can operate stably over a wide range of temperatures. Additionally, Li||SPAN pouch cell under lean electrolyte and 5 % excess Li conditions can continuously operate stably for over a month.  相似文献   
107.
Although large amount of effort has been invested in combating thermal quenching that severely degrades the performance of luminescent materials particularly at high temperatures, not much affirmative progress has been realized. Herein, we demonstrate that the Frenkel defect formed via controlled annealing of Sc2(WO4)3:Ln (Ln=Yb, Er, Eu, Tb, Sm), can work as energy reservoir and back-transfer the stored excitation energy to Ln3+ upon heating. Therefore, except routine anti-thermal quenching, thermally enhanced 415-fold downshifting and 405-fold upconversion luminescence are even obtained in Sc2(WO4)3:Yb/Er, which has set a record of both the Yb3+-Er3+ energy transfer efficiency (>85 %) and the working temperature at 500 and 1073 K, respectively. Moreover, this design strategy is extendable to other hosts possessing Frenkel defect, and modulation of which directly determines whether enhanced or decreased luminescence can be obtained. This discovery has paved new avenues to reliable generation of high-temperature luminescence.  相似文献   
108.
Solar-driven CO2 reduction reaction (CO2RR) is largely constrained by the sluggish mass transfer and fast combination of photogenerated charge carriers. Herein, we find that the photocatalytic CO2RR efficiency at the abundant gas-liquid interface provided by microdroplets is two orders of magnitude higher than that of the corresponding bulk phase reaction. Even in the absence of sacrificial agents, the production rates of HCOOH over WO3 ⋅ 0.33H2O mediated by microdroplets reaches 2536 μmol h−1 g−1 (vs. 13 μmol h−1 g−1 in bulk phase), which is significantly superior to the previously reported photocatalytic CO2RR in bulk phase reaction condition. Beyond the efficient delivery of CO2 to photocatalyst surfaces within microdroplets, we reveal that the strong electric field at the gas-liquid interface of microdroplets essentially promotes the separation of photogenerated electron-hole pairs. This study provides a deep understanding of ultrafast reaction kinetics promoted by the gas-liquid interface of microdroplets and a novel way of addressing the low efficiency of photocatalytic CO2 reduction to fuel.  相似文献   
109.
We have developed an efficient modular asymmetric synthesis of azahelicenes through an organocatalyzed asymmetric multicomponent reaction from readily available polycyclic aromatic amines, aldehydes, and (di)enamides, by employing a central-to-helical chirality conversion strategy. A series of aza[5]- and aza[4]helicenes bearing various substituents were readily afforded through this one-pot sequential enantioselective Povarov reaction/oxidative aromatization process, with good yields and high enantioselectivities. The fruitful and diverse derivatizations of the chiral azahelicene products demonstrated the potential of this method, and a preliminary application of the azahelicene derivative as a chiral organocatalyst was showcased. The photophysical and chiroptical properties of these azahelicenes, particularly the acid/base-triggered switching of these properties, were also well studied, which may find potential applications in the development of novel organic optoelectronic materials.  相似文献   
110.
The McMurry coupling is a facile, gentle and low-cost chemical reaction for synthesizing. Here, for the first time, we employed the McMurry coupling reaction to prepare π-conjugated anion exchange membranes (AEMs). The inter-chain π-π stacking between adjacent benzene rings induces directional self-assembly aggregation and enables highly ordered ion-conductive channels. The resulting structure was characterized through UV/VIS spectrum, X-ray diffraction (XRD) pattern, small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and density functional theory (DFT) calculations, leading to high OH conductivity of 135.5 mS cm−1 at 80 °C. Furthermore, the double bonds in the π-conjugated system also trigger in situ self-crosslinking of the AEMs to enhance dimensional and alkaline stability. Benefiting from this advantage, the as-obtained Cr-QPPV-2.51 AEM exhibits superior alkaline stability (95 % conductivity retention after 3000 hrs in 1 M KOH at 80 °C) and high mechanical strength of 34.8 MPa. Moreover, the fuel cell using Cr-QPPV-2.51 shows a maximum peak power density of 1.27 W cm−2 at 80 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号